

Código	FDE 097
Versión	01
Fecha	2010-01-27

Asignatura: Geometría Vectorial y Analítica – Jornada 2	Código: XRGV03	NOTA
Docente:	Fecha:	
Nombre:	Carné:	

Instrucciones:

Escriba su nombre completo y su número de carné en la parte superior de la hoja.

Los puntos serán evaluados de acuerdo a su procedimiento.

Para este parcial no se permite el uso de celulares, ni fichas.

La prueba está diseñada para una duración de máximo dos horas (2:00)

- 1. (Valor 24%) Este punto comprende los numerales 1.1. a 1.4.
- 1.1. (Valor 6%) Es una propiedad del vector director del plano.
 - A. Es paralelo al plano.

 - B. Es perpendicular al plano.C. Tiene las componentes positivas.
 - D. Es común a la línea contenida en el plano.
- **1.2.** (Valor 6%) Las ecuaciones paramétrica y simétrica de la recta que tiene como vector director (8, -3, 4) y pasa por el punto (6,2,-5), es

A.
$$\begin{cases} x = 8 + 6t \\ y = -3 + 2t \\ z = 4 - 5t \end{cases} \quad y \quad \frac{x-6}{8} = \frac{y-2}{-3} = \frac{z+5}{4}$$

B.
$$\begin{cases} x = -6 + 8t \\ y = -2 - 3t \end{cases} \quad y \quad \frac{x+6}{8} = \frac{y+2}{-3} = \frac{z-5}{4}$$

C.
$$\begin{cases} x = 6 - 8t \\ y = 2 + 3t \\ z = -5 - 4t \end{cases} \quad y \quad \frac{x-6}{8} = \frac{y-2}{-3} = \frac{z+5}{4}$$

D.
$$\begin{cases} x = 6 + 8t \\ y = 2 - 3t \\ z = -5 + 4t \end{cases} \qquad \frac{x - 6}{8} = \frac{y - 2}{-3} = \frac{z + 5}{4}$$

- 1.3. (Valor 6%) Dado el vector unitario V, si se realiza el producto V x V, dará por resultado,
 - A. Cero.
 - B. Un escalar.
 - C. Uno.
 - D. No es posible realizar.
- **1.4.** (Valor 6%) El punto P(-4,6,4) pertenece a la recta $t = \frac{x-2}{-3} = \frac{y+2}{4} = \frac{z}{2}$ porque,
 - A. El parámetro *t* es diferente en cada de las ecuaciones simétricas.
 - B. El parámetro t es igual a -2 en cada de las ecuaciones simétricas.
 - C. No es posible determinar esta afirmación con las ecuaciones simétricas dadas.
 - D. El parámetro t es igual a 2 en cada de las ecuaciones simétricas.

Código	FDE 097
Versión	01
Fecha	2010-01-27

2. (Valor 26%) Determine si las rectas se cortan o si son oblicuas. En caso de que se corten halle el punto de corte.

$$l_1$$
: $t = 2 - x = y = \frac{z+1}{-3}$

$$l_2 = \alpha = \frac{x-4}{-4} = \frac{1-y}{-1} = 3-z$$

Solución

Al organizar las ecuaciones de las rectas dadas:

$$l_1$$
: $t = \frac{x-2}{-1} = \frac{y}{1} = \frac{z+1}{-3}$

$$l_2 = \alpha = \frac{x-4}{-4} = \frac{y-1}{1} = \frac{z-3}{-1}$$

Veamos si las rectas son paralelas, notemos que los vectores directores de las rectas son:

$$\overrightarrow{v_1} = \langle -1, 1, -3 \rangle$$
 y $\overrightarrow{v_1} = \langle -4, 1, -1 \rangle$

Se realiza el producto vectorial entre $\overrightarrow{v_1}$ y $\overrightarrow{v_2}$

$$\overrightarrow{v_1} \times \overrightarrow{v_2} = \begin{vmatrix} i & j & k \\ -1 & 1 & -3 \\ -4 & 1 & -1 \end{vmatrix} = i(-1+3) - j(1-12) + k(-1+4) = 2i + 11j + 3k$$

Luego, $\overrightarrow{v_1}$ y $\overrightarrow{v_2}$ no son paralelos y por tanto las rectas no son paralelas.

Veamos si se cortan o se cruzan. Supongamos que se cortan:

$$l_1 = \begin{cases} x = 2 - t \\ y = t \\ z = -1 - 3t \end{cases}$$

$$l_1 = \begin{cases} x = 4 - 4\alpha \\ y = 1 + \alpha \\ z = 3 - \alpha \end{cases}$$

Igualamos las rectas en su representación paramétrica:

$$2-t=4-4\alpha \qquad Ec. (1)$$

$$t = 1 + \alpha \qquad Ec.(2)$$

Al utilizar las ecuaciones 1 y 2 para resolver y la tercera para verificar:

$$2-t=4-4\alpha$$
 Ec. (1)
 $t=1+\alpha$ Ec. (2)

Ecuación 1 + ecuación 2

$$2 = 5 - 3\alpha$$
 entrices $\alpha = 1$

Al sustituir $\alpha = 1$ en la ecuación 2, se encuentra que t = 2

Al verificar en la ecuación 3:
$$-1 - 3(2) = 3 - 1$$
 entonces, $-7 \neq 3$

Como no se da igualdad, concluimos que las rectas son oblicuas.

Código	FDE 097
Versión	01
Fecha	2010-01-27

3. (Valor 22%) Calcular la ecuación de un plano que contiene las siguientes rectas:

$$l_1 = \begin{cases} x = 4t \\ y = 1 + 2t \\ z = 2 - 3t \end{cases}$$

$$l_2 : \alpha = \frac{x - 3}{-8} = \frac{y - 1}{-4} = \frac{z}{6}$$

Solución

Veamos si las rectas son paralelas. Los vectores directores de $l_1 \ y \ l_2$ son:

$$\overrightarrow{v_1} = \langle 4, 2, -3 \rangle$$
 y $\overrightarrow{v_2} = \langle -8, -4, 6 \rangle$

Se realiza el producto vectorial entre $\overrightarrow{v_1}$ y $\overrightarrow{v_2}$

$$\overrightarrow{v_1} \times \overrightarrow{v_2} = \begin{vmatrix} i & j & k \\ 4 & 2 & -3 \\ -8 & -4 & 6 \end{vmatrix} = i(12 - 12) - j(24 - 24) + k(-16 + 16) = 0i + 0j + 0k$$

Las rectas son paralelas.

Veamos si son coincidentes.

Se toma el punto de la recta 2: $P_2 = (3,1,0)$ y se sustiye en la ecuación de la recta 1:

$$3 = 4t$$
 $t = \frac{3}{4}$
 $1 = 1 + 2t$ $t = 0$
 $0 = 2 - 3t$ $t = \frac{3}{4}$

Como el parámetro t es diferente en las ecuaciones analizadas, se concluye que las rectas no son coincidentes.

Se encuentra un vector con los puntos: $P_2 = (3,1,0)$ y $P_1 = (0,1,2)$

$$\vec{u} = P_2 - P_1 = \langle 3, 0, -2 \rangle$$

Se toma el vector director de alguna de las rectas: $\overrightarrow{v_1} = \langle 4, 2, -3 \rangle$

Se calcula el vector normal haciendo uso de los vectores encontrados

$$\vec{N} = \vec{u}\vec{x}\vec{v_1} = \begin{vmatrix} i & j & k \\ 3 & 0 & -2 \\ 4 & 2 & -3 \end{vmatrix} = i(0+4) - j(-9+8) + k(6-0) = 4i + j + 6k$$

Con el vector normal y el punto $P_2 = (3,1,0)$ hallamos la ecuación del plano.

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$4(x-3) + (y-1) + 6(z-0) = 0$$

$$4x - 12 + y - 1 + 6z = 0$$

4x + y + 6z = 13

Código	FDE 097
Versión	01
Fecha	2010-01-27

- **4.** (Valor 28%) Considere los planos π_1 : 5x 4y 9z = 8 y π_2 : 2x + 8y + 6z 8 = 0. Determine si los planos:
 - a) Son paralelos
 - b) Son perpendiculares
 - c) Son coincidentes
 - d) Se cortan. En caso de que se corten halle la recta de intersección de los planos.

Solución

a) Son paralelos

Los vectores normales a los planos son:

$$\overrightarrow{N_1} = \langle 5, -4, -9 \rangle$$
 y $\overrightarrow{N_2} = \langle 2, 8, 6 \rangle$

Dos planos son paralelos si sus vectores normales son paralelos.

$$N_1 x N_2 = \begin{vmatrix} i & j & k \\ 5 & -4 & -9 \\ 2 & 8 & 6 \end{vmatrix} = i \left(-24 - (-72) \right) - j \left(30 - (-18) \right) + k \left(40 - (-8) \right) = 48i - 48j + 48k$$

Como el producto vectorial no es cero, entonces podemos concluir que los vectores normales de los planos no son paralelos. Por tanto, los planos tampoco son paralelos.

b) Son perpendiculares

Para ver si los planos son perpendiculares verificamos si los vectores normales son perpendiculares, se utiliza el producto escalar para esto,

$$N_1$$
. $N_2 = \langle 5, -4, -9 \rangle$. $\langle 2, 8, 6 \rangle = 10 - 32 - 54 = -76$

Como el producto escalar entre los vectores normales no es cero, concluimos que los vectores normales no son perpendiculares. Por tanto, los planos tampoco son perpendiculares.

c) Son coincidentes

Para que los planos sean coincidentes es necesario que sean paralelos, al no ser los planos paralelos tampoco son coincidentes.

d) Se cortan. En caso de que se corten halle la recta de intersección de los planos.

En el literal **a)** se probó que los planos no son paralelos, este hecho garantiza que los planos se cortan en una recta

El vector director \vec{v} de la recta es perpendicular a $\vec{N_1}$ y $\vec{N_2}$, entonces:

$$\vec{v} = \overrightarrow{N_1} \times \overrightarrow{N_2} = \langle 48, -48, 48 \rangle$$

Para hallar la ecuación paramétrica de la recta se debe hallar un punto de la recta, se sabe que este punto satisface:

$$5x - 4y - 9z = 8$$
$$2x + 8y + 6z = 8$$

El sistema de ecuaciones tiene infinitas soluciones y cada solución representa un punto de la recta.

$$\operatorname{Si} z = 0$$

Al resolver las ecuaciones 1 y 2 s encuentra que x = 2 y $y = \frac{1}{2}$

Por tanto, el punto de la recta es $P(2, \frac{1}{2}, 0)$, y la ecuación paramétrica es:

$$l = \begin{cases} x = 2 + 48t \\ y = \frac{1}{2} - 48t \\ z = 48t \end{cases}$$